The potential of ALFA-tag and tyramide-based fluorescence signal amplification to expand the CRISPR-based DNA imaging toolkit

ALFA标签和酪胺基荧光信号放大技术在扩展基于CRISPR的DNA成像工具包方面的潜力

阅读:1
作者:Bhanu Prakash Potlapalli ,Jörg Fuchs ,Twan Rutten ,Armin Meister ,Andreas Houben

Abstract

Understanding the spatial organization of genomes within chromatin is crucial for deciphering gene regulation. A recently developed CRISPR-dCas9-based genome labeling tool, known as CRISPR-FISH, allows efficient labeling of repetitive sequences. Unlike standard fluorescence in situ hybridization (FISH), CRISPR-FISH eliminates the need for global DNA denaturation, allowing for superior preservation of chromatin structure. Here, we report on further development of the CRISPR-FISH method, which has been enhanced for increased efficiency through the engineering of a recombinant dCas9 protein containing an ALFA-tag. Using an ALFA-tagged dCas9 protein assembled with an Arabidopsis centromere-specific guide RNA, we demonstrate target-specific labeling with a fluorescence-labeled NbALFA nanobody. The dCas9 protein possessing multiple copies of the ALFA-tag, in combination with a minibody and fluorescence-labeled anti-rabbit secondary antibody, resulted in enhanced target-specific signals. The dCas9-ALFA-tag system was also instrumental in live cell imaging of telomeres in Nicotiana benthamiana. This method will further expand the CRISPR imaging toolkit, facilitating a better understanding of genome organization. Furthermore, we report the successful integration of the highly sensitive tyramide signal amplification method with CRISPR-FISH, demonstrating effective labeling of Arabidopsis centromeres. Keywords: ALFA-tag; CRISPR–FISH; chromosomes; dCas9; live cell imaging; tyramide system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。