A bilayer bioengineered patch with sequential dual-growth factor release to promote vascularization in bladder reconstruction

具有连续双生长因子释放的双层生物工程贴片可促进膀胱重建中的血管化

阅读:5
作者:Jian Zhao, Haoqian Zhang, Zhengyun Ling, Ziyan An, Shuwei Xiao, Pengchao Wang, Zhouyang Fu, Jinpeng Shao, Yanfeng Sun, Weijun Fu

Abstract

Bladder tissue engineering holds promise for addressing bladder defects resulting from congenital or acquired bladder diseases. However, inadequate vascularization significantly impacts the survival and function of engineered tissues after transplantation. Herein, a novel bilayer silk fibroin (BSF) scaffold was fabricated with the capability of vascular endothelial growth factor (VEGF) and platelet derived growth factor-BB (PDGF-BB) sequential release. The outer layer of the scaffold was composed of compact SF film with waterproofness to mimic the serosa of the bladder. The inner layer was constructed of porous SF matrix incorporated with SF microspheres (MS) loaded with VEGF and PDGF-BB. We found that the 5% (w/v) MS-incorporated scaffold exhibited a rapid release of VEGF, whereas the 0.2% (w/v) MS-incorporated scaffold demonstrated a slow and sustained release of PDGF-BB. The BSF scaffold exhibited good biocompatibility and promoted endothelial cell migration, tube formation and enhanced endothelial differentiation of adipose derived stem cells (ADSCs) in vitro. The BSF patch was constructed by seeding ADSCs on the BSF scaffold. After in vivo transplantation, not only could the BSF patch facilitate the regeneration of urothelium and smooth muscle, but more importantly, stimulate the regeneration of blood vessels. This study demonstrated that the BSF patch exhibited excellent vascularization capability in bladder reconstruction and offered a viable functional bioengineered patch for future clinical studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。