Cholesterol Biases the Conformational Landscape of the Chemokine Receptor CCR3: A MAS SSNMR-Filtered Molecular Dynamics Study

胆固醇影响趋化因子受体 CCR3 的构象景观:MAS SSNMR 过滤分子动力学研究

阅读:8
作者:Evan J van Aalst, Corey J McDonald, Benjamin J Wylie

Abstract

Cholesterol directs the pathway of ligand-induced G protein-coupled receptor (GPCR) signal transduction. The GPCR C-C motif chemokine receptor 3 (CCR3) is the principal chemotactic receptor for eosinophils, with roles in cancer metastasis and autoinflammatory conditions. Recently, we discovered a direct correlation between bilayer cholesterol and increased agonist-triggered CCR3 signal transduction. However, the allosteric molecular mechanism escalating ligand affinity and G protein coupling is unknown. To study cholesterol-guided CCR3 conformational selection, we implement comparative, objective measurement of protein architectures by scoring shifts (COMPASS) to grade model structures from molecular dynamics simulations. In this workflow, we scored predicted chemical shifts against 2-dimensional solid-state NMR 13C-13C correlation spectra of U-15N,13C-CCR3 samples prepared with and without cholesterol. Our analysis of trajectory model structures uncovers that cholesterol induces site-specific conformational restraint of extracellular loop (ECL) 2 and conserved motion in transmembrane helices and ECL3 not observed in simulations of bilayers with only phosphatidylcholine lipids. PyLipID analysis implicates direct cholesterol agency in CCR3 conformational selection and dynamics. Residue-residue contact scoring shows that cholesterol biases the conformational selection of the orthosteric pocket involving Y411.39, Y1133.32, and E2877.39. Lastly, we observe contact remodeling in activation pathway residues centered on the initial transmission switch, Na+ pocket, and R3.50 in the DRY motif. Our observations have unique implications for understanding of CCR3 ligand recognition and specificity and provide mechanistic insight into how cholesterol functions as an allosteric regulator of CCR3 signal transduction.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。