AGEs in human lens capsule promote the TGFβ2-mediated EMT of lens epithelial cells: implications for age-associated fibrosis

人类晶状体囊中的 AGE 促进 TGFβ2 介导的晶状体上皮细胞 EMT:对年龄相关纤维化的影响

阅读:5
作者:Cibin T Raghavan, Mareen Smuda, Andrew J O Smith, Scott Howell, Dawn G Smith, Annapurna Singh, Pankaj Gupta, Marcus A Glomb, Ian Michael Wormstone, Ram H Nagaraj

Abstract

Proteins in basement membrane (BM) are long-lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial-to-mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age-dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC-MS/MS. The TGFβ2-mediated upregulation of the mRNA levels (by qPCR) of EMT-associated proteins was significantly enhanced in cells cultured on AGE-modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2-mediated α-smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2-mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes-associated fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。