Extension of Compositional Space to the Ternary in Alloy Chiral Nanoparticles through Galvanic Replacement Reactions

通过电化学置换反应将合金手性纳米粒子的组成空间扩展到三元

阅读:7
作者:Ziyue Ni, Yuanmin Zhu, Junjun Liu, Lin Yang, Peng Sun, Meng Gu, Zhifeng Huang

Abstract

Metal chiral nanoparticles (CNPs), composed of atomically chiral lattices, are an emerging chiral nanomaterial showing unique asymmetric properties. Chirality transmission from the host CNPs mediated with galvanic replacement reactions (GRRs) has been carried out to extend their compositional space from the unary to binary. Further compositional extension to, e.g., the ternary is of fundamental interest and in practical demand. Here, layer-by-layer glancing angle deposition is used to dope galvanically "inert" dopant Au in the host Cu CNPs to generate binary Cu:Au CNPs. The "inert" dopants serve as structural scaffold to assist the chirality transmission from the host to the third metals (M: Pt and Ag) cathodically precipitating in the CNPs, enabling the formation of polycrystalline ternary Cu:Au:M CNPs whose compositions are tailored with engineering the GRR duration. More scaffold Au atoms are favored for the faster chirality transfer, and the Au-assisted chirality transfer follows the first-order kinetics with the reaction rate coefficient of ≈0.3 h-1 at room temperature. This work provides further understanding of the GRR-mediated chirality transfer and paves the way toward enhancing the application functions in enantiodifferentiation, enantioseperation, asymmetric catalysis, bioimaging, and biodetection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。