Inhibition of focal adhesion kinase enhances antitumor response of radiation therapy in pancreatic cancer through CD8+ T cells

抑制粘着斑激酶可通过 CD8+ T 细胞增强胰腺癌放射治疗的抗肿瘤反应

阅读:6
作者:Arsen Osipov, Alex B Blair, Juliane Liberto, Jianxin Wang, Keyu Li, Brian Herbst, Yao Xu, Shiqi Li, Nan Niu, Rufiaat Rashid, Ding Ding, Yanan Liu, Zaiqi Wang, Christopher L Wolfgang, Richard A Burkhart, Daniel Laheru, Lei Zheng

Conclusions

These results support the clinical development of FAKi as a radiosensitizer for PDAC and combining FAKi with RT to prime the tumor microenvironment of PDAC for immunotherapy.

Methods

We used a syngeneic orthotopic murine model to study the effect of FAKi on hypofractionated RT.

Objective

Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy, due in large part to its resistance to conventional therapies, including radiotherapy (RT). Despite RT exerting a modest antitumor response, it has also been shown to promote an immunosuppressive tumor microenvironment. Previous studies demonstrated that focal adhesion kinase inhibitors (FAKi) in clinical development inhibit the infiltration of suppressive myeloid cells and T regulatory (T regs) cells, and subsequently enhance effector T cell infiltration. FAK inhibitors in clinical development have not been investigated in combination with RT in preclinical murine models or clinical studies. Thus, we investigated the impact of FAK inhibition on RT, its potential as an RT sensitizer and immunomodulator in a murine model of PDAC.

Results

In this study we showed that IN10018, a small molecular FAKi, enhanced antitumor response to RT. Antitumor activity of the combination of FAKi and RT is T cell dependent. FAKi in combination with RT enhanced CD8+ T cell infiltration significantly in comparison to the radiation or FAKi treatment alone (P < 0.05). FAKi in combination with radiation inhibited the infiltration of granulocytes but enhanced the infiltration of macrophages and T regs in comparison with the radiation or FAKi treatment alone (P < 0.01). Conclusions: These results support the clinical development of FAKi as a radiosensitizer for PDAC and combining FAKi with RT to prime the tumor microenvironment of PDAC for immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。