Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling

通过定点自旋标记和化学标记揭示淀粉样蛋白原纤维中平行堆叠的 β2-微球蛋白 β 链

阅读:9
作者:Carol L Ladner, Min Chen, David P Smith, Geoffrey W Platt, Sheena E Radford, Ralf Langen

Abstract

beta(2)-microglobulin (beta(2)m) is a 99-residue protein with an immunoglobulin fold that forms beta-sheet-rich amyloid fibrils in dialysis-related amyloidosis. Here the environment and accessibility of side chains within amyloid fibrils formed in vitro from beta(2)m with a long straight morphology are probed by site-directed spin labeling and accessibility to modification with N-ethyl maleimide using 19 site-specific cysteine variants. Continuous wave electron paramagnetic resonance spectroscopy of these fibrils reveals a core predominantly organized in a parallel, in-register arrangement, by contrast with other beta(2)m aggregates. A continuous array of parallel, in-register beta-strands involving most of the polypeptide sequence is inconsistent with the cryoelectron microscopy structure, which reveals an architecture based on subunit repeats. To reconcile these data, the number of spins in close proximity required to give rise to spin exchange was determined. Systematic studies of a model protein system indicated that juxtaposition of four spin labels is sufficient to generate exchange narrowing. Combined with information about side-chain mobility and accessibility, we propose that the amyloid fibrils of beta(2)m consist of about six beta(2)m monomers organized in stacks with a parallel, in-register array. The results suggest an organization more complex than the accordion-like beta-sandwich structure commonly proposed for amyloid fibrils.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。