Brain targeting stealth lipomers of combined antiepileptic-anti-inflammatory drugs as alternative therapy for conventional anti-Parkinson's

抗癫痫抗炎药物联合脑靶向隐形脂质体作为传统抗帕金森病治疗的替代疗法

阅读:5
作者:Iman M Higazy

Abstract

This study presents an alternative therapy to conventional anti-Parkinson's treatment strategies; where motor and non-motor symptomatic complications are considered. Thus; providing sustainability, patient compliance, therapeutic safety and efficiency, based on triggering secretion of endogenous dopamine (DA). Exogenous DA has long been considered the best therapy, however, its poor blood brain barrier (BBB) permeability, fluctuated plasma levels, and non-motor complications negligence, decreased response to therapy with time. Consequently; brain targeting Tween®80-coated pegylated lipomers were tailored for intravenous administration (IV) of L-Dopa, and two drugs of reported neuroprotective effect: lamotrigine (LTG) and tenoxicam (TX). Single-step nanoprecipitation method was used; for its reproducibility and ease of scaling-up. Formulation targeting and anti-PD efficiency was evaluated against marketed standards and L-Dopa. In-vitro and in-vivo pharmacokinetic and dynamic studies were carried out for setting optimization standards upon varying inter-components ratio. Results revealed that lipomers are, generally, significantly efficient in brain targeting compared to oral tablets. LTG-lipomers (LF20) showed the maximum anti-PD compared to its TX and L-Dopa analogues. Combining LTG and TX had synergistic effect; highlighting a new prescription for both drugs. Thus; offering a safe, targeted, and therapeutically efficient sustained dosage form, capable of mitigating PD risk and treating it though weekly administration. Hence; presenting a novel promising anti-neurodegenerative strategy; on employing various mechanisms that were previously achieved through additional therapeutic supplements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。