Magnetic Resonance Imaging Tracking of Graft Survival in the Infarcted Heart: Iron Oxide Particles Versus Ferritin Overexpression Approach

梗塞心脏移植物存活的磁共振成像追踪:氧化铁颗粒与铁蛋白过表达方法

阅读:6
作者:Anna V Naumova, Niranjan Balu, Vasily L Yarnykh, Hans Reinecke, Charles E Murry, Chun Yuan

Abstract

The main objective of cell therapy is the regeneration of damaged tissues. To distinguish graft from host tissue by magnetic resonance imaging (MRI), a paramagnetic label must be introduced to cells prior to transplantation. The paramagnetic label can be either exogenous iron oxide nanoparticles or a genetic overexpression of ferritin, an endogenous iron storage protein. The purpose of this work was to compare the efficacy of these 2 methods for MRI evaluation of engrafted cell survival in the infarcted mouse heart. Mouse skeletal myoblasts were labeled either by cocultivation with iron oxide particles or by engineering them to overexpress ferritin. Along with live cell transplantation, 2 other groups of mice were injected with dead-labeled cells. Both particle-labeled and ferritin-tagged grafts were detected as areas of MRI signal hypointensity in the left ventricle of the mouse heart using T2*-weighted sequences, although the signal attenuation decreased with ferritin tagging. Importantly, live cells could not be distinguished from dead cells when labeled with iron oxide particles, whereas the ferritin tagging was detected only in live grafts, thereby allowing identification of viable grafts using MRI. Thus, iron oxide particles can provide information about initial cell injection success but cannot assess graft viability. On the other hand, genetically based cell tagging, such as ferritin overexpression, despite having lower signal intensity in comparison with iron oxide particles, is able to identify live transplanted cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。