Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia

与年龄相关的骨骼肌一氧化氮合酶的损失导致钙蛋白酶 S-亚硝化减少,从而增加肌原纤维降解和肌肉减少症

阅读:7
作者:Giuseppina Samengo, Anna Avik, Brian Fedor, Daniel Whittaker, Kyu H Myung, Michelle Wehling-Henricks, James G Tidball

Abstract

Sarcopenia, the age-related loss of muscle mass, is a highly-debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle-specific overexpression of calpastatin, the endogenous inhibitor of calcium-dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S-nitrosylation. We find that calpain in adult, non-sarcopenic muscles is S-nitrosylated but that aging leads to loss of S-nitrosylation, suggesting that reduced S-nitrosylation during aging leads to increased calpain-mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle-specific nNOS transgene restores calpain S-nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S-nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。