Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFβ Signaling

通过反义寡核苷酸介导的 TGFβ 信号衰减重建成年非人类灵长类动物的神经源性微环境

阅读:11
作者:Sebastian Peters, Sabrina Kuespert, Eva Wirkert, Rosmarie Heydn, Benjamin Jurek, Siw Johannesen, Ohnmar Hsam, Sven Korte, Florian Timo Ludwig, Lars Mecklenburg, Heike Mrowetz, Barbara Altendorfer, Rodolphe Poupardin, Susanne Petri, Dietmar R Thal, Andreas Hermann, Jochen H Weishaupt, Joachim Weis, I

Abstract

Adult neurogenesis is a target for brain rejuvenation as well as regeneration in aging and disease. Numerous approaches showed efficacy to elevate neurogenesis in rodents, yet translation into therapies has not been achieved. Here, we introduce a novel human TGFβ-RII (Transforming Growth Factor-Receptor Type II) specific LNA-antisense oligonucleotide ("locked nucleotide acid"-"NVP-13"), which reduces TGFβ-RII expression and downstream receptor signaling in human neuronal precursor cells (ReNcell CX® cells) in vitro. After we injected cynomolgus non-human primates repeatedly i.th. with NVP-13 in a preclinical regulatory 13-week GLP-toxicity program, we could specifically downregulate TGFβ-RII mRNA and protein in vivo. Subsequently, we observed a dose-dependent upregulation of the neurogenic niche activity within the hippocampus and subventricular zone: human neural progenitor cells showed significantly (up to threefold over control) enhanced differentiation and cell numbers. NVP-13 treatment modulated canonical and non-canonical TGFβ pathways, such as MAPK and PI3K, as well as key transcription factors and epigenetic factors involved in stem cell maintenance, such as MEF2A and pFoxO3. The latter are also dysregulated in clinical neurodegeneration, such as amyotrophic lateral sclerosis. Here, we provide for the first time in vitro and in vivo evidence for a novel translatable approach to treat neurodegenerative disorders by modulating neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。