Implications of Possible HBV-Driven Regulation of Gene Expression in Stem Cell-like Subpopulation of Huh-7 Hepatocellular Carcinoma Cell Line

HBV 可能驱动 Huh-7 肝细胞癌细胞系干细胞样亚群基因表达调控的意义

阅读:13
作者:Ayse Banu Demir, Domenico Benvenuto, Bilge Karacicek, Yasemin Erac, Silvia Spoto, Silvia Angeletti, Massimo Ciccozzi, Metiner Tosun

Abstract

Elevated levels of STIM1, an endoplasmic reticulum Ca2+ sensor/buffering protein, appear to be correlated with poor cancer prognosis in which microRNAs are also known to play critical roles. The purpose of this study is to investigate possible HBV origins of specific microRNAs we identified in a stem cell-like subpopulation of Huh-7 hepatocellular carcinoma (HCC) cell lines with enhanced STIM1 and/or Orai1 expression that mimicked poor cancer prognosis. Computational strategies including phylogenetic analyses were performed on miRNome data we obtained from an EpCAM- and CD133-expressing Huh-7 HCC stem cell-like subpopulation with enhanced STIM1 and/or Orai1 expression originally cultured in the present work. Results revealed two putative regions in the HBV genome based on the apparent clustering pattern of stem loop sequences of microRNAs, including miR3653. Reciprocal analysis of these regions identified critical human genes, of which their transcripts are among the predicted targets of miR3653, which was increased significantly by STIM1 or Orai1 enhancement. Briefly, this study provides phylogenetic evidence for a possible HBV-driven epigenetic remodeling that alters the expression pattern of Ca2+ homeostasis-associated genes in STIM1- or Orai1 overexpressing liver cancer stem-like cells for a possible mutual survival outcome. A novel region on HBV-X protein may affect liver carcinogenesis in a genotype-dependent manner. Therefore, detection of the viral genotype would have a clinical impact on prognosis of HBV-induced liver cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。