Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model

人类原发性导管原位癌 (DCIS) 亚型特异性病理在小鼠导管内 (MIND) 异种移植模型中得以保留

阅读:8
作者:Kelli Elizabeth Valdez, Fang Fan, William Smith, D Craig Allred, Daniel Medina, Fariba Behbod

Abstract

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer. The current recognition that DCIS lesions exhibit inter- and intra-lesion diversity suggests that the process of evolution to invasive breast cancer is more complex than previously recognized. Here we demonstrate the reproducible growth of primary DCIS cells derived from patient's surgical and biopsy samples by the mouse intraductal (MIND) model. MIND involves injection of cells into the NOD-SCID IL2Rgamma$^{{\rm{null}}}$ (NSG) mouse mammary ducts. Twelve (eight unique and four repeats) DCIS and two atypical hyperplasia specimens, heterogeneous with respect to biomarker expression and histology, were injected into 48 mouse mammary glands and analysed for successful xenotransplantation. Overall, 14/34 and 11/14 MIND xenotransplanted glands contained human DCIS and atypical hyperplastic cells, respectively, after 8 weeks, which formed single and multi-layered epithelium inside the ducts, and were heterogeneous with respect to expression of human cytokeratins, oestrogen receptor α (ER), and HER2. ER protein expression was recapitulated in MIND xenografts at ratios similar to the corresponding patient biopsies. In both patient biopsies and corresponding MIND xenografts, HER2 protein expression and nuclear HER2 gene overexpression were restricted to the DCIS lesions and were not found in the surrounding stroma or normal ducts. The xenografted DCIS lesions recapitulate the pathology and heterogeneity of human disease, thus providing a powerful tool for the characterization of the distinct cellular and molecular basis of inter- and intra-tumoural heterogeneity and the processes of DCIS to early invasive breast cancer progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。