Accumulation of systematic TPM1 mediates inflammation and neuronal remodeling by phosphorylating PKA and regulating the FABP5/NF-κB signaling pathway in the retina of aged mice

系统性 TPM1 蓄积通过磷酸化 PKA 和调节老年小鼠视网膜中的 FABP5/NF-κB 信号通路介导炎症和神经元重塑

阅读:5
作者:Rong Li, Yuxiang Liang, Bin Lin

Abstract

The molecular mechanisms underlying functional decline during normal brain aging are poorly understood. Here, we identified the actin-associated protein tropomyosin 1 (TPM1) as a new systemic pro-aging factor associated with function deficits in normal aging retinas. Heterochronic parabiosis and blood plasma treatment confirmed that systemic factors regulated age-related inflammatory responses and the ectopic dendritic sprouting of rod bipolar (RBC) and horizontal (HC) cells in the aging retina. Proteomic analysis revealed that TPM1 was a potential systemic molecule underlying structural and functional deficits in the aging retina. Recombinant TPM1 protein administration accelerated the activation of glial cells, the dendritic sprouting of RBCs and HCs and functional decline in the retina of young mice, whereas anti-TPM1 neutralizing antibody treatment ameliorated age-related structural and function changes in the retina of aged mice. Old mouse plasma (OMP) induced glial cell activation and the dendritic outgrowth of RBCs and HCs in young mice, and yet TMP1-depleted OMP failed to reproduce the similar effect in young mice. These results confirmed that TPM1 was a systemic pro-aging factor. Moreover, we demonstrated that systematic TPM1 was an immune-related molecule, which elicited endogenous TPM1 expression and inflammation by phosphorylating PKA and regulating FABP5/NF-κB signaling pathway in normal aging retinas. Interestingly, we observed TPM1 upregulation and the ectopic dendritic sprouting of RBCs and HCs in young mouse models of Alzheimer's disease, indicating a potential role of TPM1 in age-related neurodegenerative diseases. Our data indicate that TPM1 could be targeted for combating the aging process.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。