Comparative transcriptome analysis of Poncirus trifoliata identifies a core set of genes involved in arbuscular mycorrhizal symbiosis

枳实的比较转录组分析确定了参与丛枝菌根共生的一组核心基因

阅读:21
作者:Jianyong An, Mengqian Sun, Robin van Velzen, Chuanya Ji, Zijun Zheng, Erik Limpens, Ton Bisseling, Xiuxin Deng, Shunyuan Xiao, Zhiyong Pan

Abstract

The perennial woody plants of citrus are one of the most important fruit crops in the world and largely depends on arbuscular mycorrhizal symbiosis (AMS) to obtain essential nutrients from soil. However, the molecular aspects of AMS in citrus and perennial woody plants in general have largely been understudied. We used RNA-sequencing to identify differentially expressed genes in roots of Poncirus trifoliata upon mycorrhization by the AM fungus Glomus versiforme and evaluated their conservation by comparative transcriptome analyses with four herbaceous model plants. We identified 282 differentially expressed genes in P. trifoliata, including orthologs of 21 genes with characterized roles in AMS and 83 genes that are considered to be conserved in AM-host plants. Comparative transcriptome analysis revealed a 'core set' of 156 genes from P. trifoliata whose orthologous genes from at least three of the five species also exhibited similar transcriptional changes during AMS. Functional analysis of one of these conserved AM-induced genes, a 3-keto-acyl-ACP reductase (FatG) involved in fatty acid biosynthesis, confirmed its involvement in AMS in Medicago truncatula. Our results identify a core transcriptional program for AMS that is largely conserved between P. trifoliata and other plants. The comparative transcriptomics approach adds to previous phylogenomics studies to identify conserved genes required for AMS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。