Exendin-4 promotes retinal ganglion cell survival and function by inhibiting calcium channels in experimental diabetes

Exendin-4 通过抑制实验性糖尿病中的钙通道促进视网膜神经节细胞存活和功能

阅读:5
作者:Yong-Chen Wang, Lu Wang, Yu-Qi Shao, Shi-Jun Weng, Xiong-Li Yang, Yong-Mei Zhong

Abstract

Progressive damage of retinal ganglion cells (RGCs) is observed in early diabetic retinopathy. Intracellular Ca2+ overload mediated by Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is involved in neurodegeneration, whereas glucagon-like peptide-1 (GLP-1) provides neuroprotection. However, whether GLP-1 plays a neuroprotective role in diabetic retinas by modulating VGCCs remains unknown. We found that eye drops of exendin-4, a long-acting GLP-1 receptor (GLP-1R) agonist, prevented the increase of L-type Ca2+ current (ILCa) densities of RGCs induced by 4-week hyperglycemia and promoted RGC survival by suppressing L-type VGCC (L-VGCC) activity in streptozotocin-induced diabetic rats. Moreover, exendin-4-induced suppression of ILCa in RGCs may be mediated by a GLP-1R/Gs/cAMP-PKA/ryanodine/Ca2+/calmodulin/calcineurin/PP1 signaling pathway. Furthermore, exendin-4 functionally improved the light-evoked spiking ability of diabetic RGCs. These results suggest that GLP-1R activation enhances cAMP to PP1 signaling and that PP1 inactivates L-VGCCs by dephosphorylating them, thereby reducing Ca2+ influx, which could protect RGCs against excitotoxic Ca2+ overload.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。