Consequences of a 2-Deoxyglucose Exposure on the ATP Content and the Cytosolic Glucose Metabolism of Cultured Primary Rat Astrocytes

2-脱氧葡萄糖暴露对培养的原代大鼠星形胶质细胞的 ATP 含量和细胞浆葡萄糖代谢的影响

阅读:8
作者:Antonia Regina Harders, Patrick Watermann, Gabriele Karger, Sadhbh Cynth Denieffe, Alina Weller, Annika Carina Dannemann, Johanna Elisabeth Willker, Yvonne Köhler, Christian Arend, Ralf Dringen

Abstract

The glucose analogue 2-deoxyglucose (2DG) has frequently been used as a tool to study cellular glucose uptake and to inhibit glycolysis. Exposure of primary cultured astrocytes to 2DG caused a time- and concentration-dependent cellular accumulation of 2-deoxyglucose-6-phosphate (2DG6P) that was accompanied by a rapid initial decline in cellular ATP content. Inhibitors of mitochondrial respiration as well as inhibitors of mitochondrial uptake of pyruvate and activated fatty acids accelerated the ATP loss, demonstrating that mitochondrial ATP regeneration contributes to the partial maintenance of the ATP content in 2DG-treated astrocytes. After a 30 min exposure to 10 mM 2DG the specific content of cellular 2DG6P had accumulated to around 150 nmol/mg, while cellular ATP was lowered by 50% to around 16 nmol/mg. Following such a 2DG6P-loading of astrocytes, glycolytic lactate production from applied glucose was severely impaired during the initial 60 min of incubation, but was reestablished during longer incubation concomitant with a loss in cellular 2DG6P content. In contrast to glycolysis, the glucose-dependent NADPH regeneration via the pentose phosphate pathway (PPP) was only weakly affected in 2DG6P-loaded astrocytes and in cells that were coincubated with glucose in the presence of an excess of 2DG. Additionally, in the presence of 2DG PPP-dependent WST1 reduction was found to have doubled compared to hexose-free control incubations, indicating that cellular 2DG6P can serve as substrate for NADPH regeneration by the astrocytic PPP. The data presented provide new insights on the metabolic consequences of a 2DG exposure on the energy and glucose metabolism of astrocytes and demonstrate the reversibility of the inhibitory potential of a 2DG-treatment on the glucose metabolism of cultured astrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。