Ezetimibe Induces Vasodilation in Rat Mesenteric Resistance Arteries through Inhibition of Extracellular Ca2+ Influx

依折麦布通过抑制细胞外 Ca2+ 内流诱导大鼠肠系膜阻力动脉血管舒张

阅读:9
作者:Eun Yi Oh, Chae Eun Haam, Sooyeon Choi, Seonhee Byeon, Soo-Kyoung Choi, Young-Ho Lee

Abstract

Ezetimibe is a lipid-lowering agent that selectively inhibits cholesterol absorption by binding to the Niemann-Pick C1-like 1 (NPC1L1) protein. Although it is well known that administration of ezetimibe in hypercholesterolemia patients reduces the risk of cardiovascular events through attenuation of atherosclerosis, studies on the direct effect of ezetimibe on vascular function are not sufficient. The aim of the present study was to investigate the vascular effects of ezetimibe in rat mesenteric arteries. In the present study, 12-week-old male Sprague Dawley rats were used. After the rats were sacrificed, the second branches of the mesenteric arteries were isolated and cut into 2-3 mm segments and mounted in a multi-wire myography system to measure isometric tension. Ezetimibe reduced vasoconstriction induced by U46619 (500 nM) in endothelium-intact and endothelium-denuded arteries. Ezetimibe-induced vasodilation was not affected by the endothelial nitric oxide synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 300 μM) or the non-selective potassium channel blocker, tetraethylammonium (TEA, 10 mM). Moreover, ezetimibe also completely blocked the contraction induced by an increase in external calcium concentration. Ezetimibe significantly reduced vascular contraction induced by L-type Ca2+ channel activator (Bay K 8644, 30 nM). Treatment with ezetimibe decreased the phosphorylation level of 20 kDa myosin light chain (MLC20) in vascular smooth muscle cells. In the present study, we found that ezetimibe has a significant vasodilatory effect in rat mesenteric resistance arteries. These results suggest that ezetimibe may have beneficial cardiovascular effects beyond its cholesterol-lowering properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。