Targeting Caveolin-1 in Multiple Myeloma Cells Enhances Chemotherapy and Natural Killer Cell-Mediated Immunotherapy

靶向多发性骨髓瘤细胞中的 Caveolin-1 可增强化疗和自然杀伤细胞介导的免疫疗法

阅读:5
作者:Dewen Zhan, Zhimin Du, Shang Zhang, Juanru Huang, Jian Zhang, Hui Zhang, Zhongrui Liu, Eline Menu, Jinheng Wang

Abstract

The cell membrane transport capacity and surface targets of multiple myeloma (MM) cells heavily influence chemotherapy and immunotherapy. Here, it is found that caveolin-1 (CAV1), a primary component of membrane lipid rafts and caveolae, is highly expressed in MM cells and is associated with MM progression and drug resistance. CAV1 knockdown decreases MM cell adhesion to stromal cells and attenuates cell adhesion-mediated drug resistance to bortezomib. CAV1 inhibition in MM cells enhances natural killer cell-mediated cytotoxicity through increasing CXCL10, SLAMF7, and CD112. CAV1 suppression reduces mitochondrial membrane potential, increases reactive oxygen species, and inhibits autophagosome-lysosome fusion, resulting in the disruption of redox homeostasis. Additionally, CAV1 knockdown enhances glutamine addiction by increasing ASCT2 and LAT1 and dysregulates glutathione metabolism. As a result of CAV1 inhibition, MM cells are more sensitive to starvation, glutamine depletion, and glutamine transporter inhibition, and grow more slowly in vivo in a mouse model treated with bortezomib. The observation that CAV1 inhibition modulated by 6-mercaptopurine, daidzin, and statins enhances the efficacy of bortezomib in vitro and in vivo highlights the translational significance of these FDA-approved drugs in improving MM outcomes. These data demonstrate that CAV1 serves as a potent therapeutic target for enhancing chemotherapy and immunotherapy for MM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。