Impact of Fc N-glycan sialylation on IgG structure

Fc N-糖唾液酸化对 IgG 结构的影响

阅读:7
作者:Zhongqi Zhang, Bhavana Shah, Jason Richardson

Abstract

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。