Corneal stromal stem cells versus corneal fibroblasts in generating structurally appropriate corneal stromal tissue

角膜基质干细胞与角膜成纤维细胞在生成结构合适的角膜基质组织方面

阅读:14
作者:Jian Wu, Yiqin Du, Mary M Mann, James L Funderburgh, William R Wagner

Abstract

Recapitulation of human corneal stromal tissue is believed to be among the most challenging steps in engineering human corneal tissue because of the difficulty in reproducing its highly-ordered hierarchical ultrastructure, which imparts its robust biomechanical properties and optical transparency. In this study, we compared the feasibility of utilizing human corneal stromal stem cells (hCSSCs) and human corneal fibroblasts (hCFs) in the generation of human corneal stromal tissue on a highly-aligned fibrous substrate made from poly(ester urethane) urea. In the serum-free keratocyte differentiation medium supplemented with FGF-2 (10 ng/mL) and TGF-β3 (0.1 ng/mL), hCSSCs successfully differentiated into keratocytes and secreted multilayered lamellae with orthogonally-oriented collagen fibrils, in a pattern mimicking human corneal stromal tissue. The constructs were 60-70 μm thick and abundant in cornea-specific extracellular matrix (ECM) components, including keratan sulfate, lumican, and keratocan. Under the identical conditions, hCFs tended to differentiate into myofibroblasts and deposited a less-organized collagen-fibrillar construct in a pattern with similarities to corneal scar tissue due to a lack of cornea-specific ECM components. These observations demonstrated that hCSSCs showed a much greater potential, under proper substrate and growth factor guidance, to facilitate the generation of a biological human cornea equivalent. Unlike hCSSCs, hCFs were less responsive to these environmental cues and under identical culture conditions generated an ECM that poorly mimicked the native, functional tissue structure and composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。