An autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through deregulated VEGFA, NOS1, and CTNNB1

子宫血管微环境中的自噬缺陷通过失调的 VEGFA、NOS1 和 CTNNB1 引起高通透性

阅读:7
作者:Bora Lee, Hyejin Shin, Ji-Eun Oh, Jaekyoung Park, Mira Park, Seung Chel Yang, Jin-Hyun Jun, Seok-Ho Hong, Haengseok Song, Hyunjung Jade Lim

Abstract

The uterus undergoes vascular changes during the reproductive cycle and pregnancy. Steroid hormone deprivation induces macroautophagy/autophagy in major uterine cell types. Herein, we explored the functions of uterine autophagy using the Amhr2-Cre-driven atg7 deletion model. Deletion of Atg7 was confirmed by functional deficit of autophagy in uterine stromal, myometrial, and vascular smooth muscle cells, but not in endothelial cells. atg7d/d uteri exhibited enhanced stromal edema accompanied by dilation of blood vessels. Ovariectomized atg7d/d uteri showed decreased expression of endothelial junction-related proteins, such as CTNNB1/beta-catenin, with increased vascular permeability, and increased expression of VEGFA and NOS1. Nitric oxide (NO) was shown to mediate VEGFA-induced vascular permeability by targeting CTNNB1. NO involvement in maintaining endothelial junctional stability in atg7d/d uteri was confirmed by the reduction in extravasation following treatment with a NOS inhibitor. We also showed that atg7d/d uterine phenotype improved the fetal weight:placental weight ratio, which is one of the indicators of assessing the status of preeclampsia. We showed that autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through the deregulation of VEGFA, NOS1, and CTNNB1.Abbreviations: ACTA2: actin, alpha 2, smooth muscle, aortic; Amhr2: anti-Mullerian hormone type 2 receptor; ANGPT1: angiopoietin 1; ATG: autophagy-related; CDH5: cadherin 5; CLDN5: claudin 5; COL1A1: collagen, type I, alpha 1; CSPG4/NG2: chondroitin sulfate proteoglycan 4; CTNNB1: catenin (cadherin associated protein), beta 1; DES: desmin; EDN1: endothelin 1; EDNRB: endothelin receptor type B; F3: coagulation factor III; KDR/FLK1/VEGFR2: kinase insert domain protein receptor; LYVE1: lymphatic vessel endothelial hyaluronan receptor 1; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCAM/CD146: melanoma cell adhesion molecule; MYL2: myosin, light polypeptide 2, regulatory, cardiac, slow; MYLK: myosin, light polypeptide kinase; NOS1/nNOS: nitric oxide synthase 1, neuronal; NOS2/iNOS: nitric oxide synthase 2, inducible; NOS3/eNOS: nitric oxide synthase 3, endothelial cell; OVX: ovariectomy; PECAM1/CD31: platelet/endothelial cell adhesion molecule 1; POSTN: periostin, osteoblast specific factor; SQSTM1: sequestosome 1; TEK/Tie2: TEK receptor tyrosine kinase; TJP1/ZO-1: tight junction protein 1; TUBB1, tubulin, beta 1 class VI; USC: uterine stromal cell; VEGFA: vascular endothelial growth factor A; VSMC: vascular smooth muscle cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。