Discovering novel Cathepsin L inhibitors from natural products using artificial intelligence

利用人工智能从天然产物中发现新型 Cathepsin L 抑制剂

阅读:4
作者:Qi Li, Si-Rui Zhou, Hanna Kim, Hao Wang, Juan-Juan Zhu, Jin-Kui Yang

Abstract

Cathepsin L (CTSL) is a promising therapeutic target for metabolic disorders. Current pharmacological interventions targeting CTSL have demonstrated potential in reducing body weight gain, serum insulin levels, and improving glucose tolerance. However, the clinical application of CTSL inhibitors remains limited. In this study, we used a combination of artificial intelligence and experimental methods to identify new CTSL inhibitors from natural products. Through a robust deep learning model and molecular docking, we screened 150 molecules from natural products for experimental validation. At a concentration of 100 µM, we found that 36 of them exhibited more than 50 % inhibition of CTSL. Notably, 13 molecules displayed over 90 % inhibition and exhibiting concentration-dependent effects. The molecular dynamics simulation on the two most potent inhibitors, Plumbagin and Beta-Lapachone, demonstrated stable interaction at the CTSL active site. Enzyme kinetics studies have shown that these inhibitors exert an uncompetitive inhibitory effect on CTSL. In conclusion, our research identifies Plumbagin and Beta-Lapachone as potential CTSL inhibitors, offering promising candidates for the treatment of metabolic disorders and illustrating the effectiveness of artificial intelligence in drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。