F-box protein complex FBXL19 regulates TGFβ1-induced E-cadherin down-regulation by mediating Rac3 ubiquitination and degradation

F-box 蛋白复合物 FBXL19 通过介导 Rac3 泛素化和降解来调节 TGFβ1 诱导的 E-钙粘蛋白下调

阅读:6
作者:Su Dong, Jing Zhao, Jianxin Wei, Rachel K Bowser, Andrew Khoo, Zhonghui Liu, James D Luketich, Arjun Pennathur, Haichun Ma, Yutong Zhao

Background

Rac3 is a small GTPase multifunctional protein that regulates cell adhesion, migration, and differentiation. It has been considered as an oncogene in breast cancer; however, its role in esophageal cancer and the regulation of its stability have not been studied. F-box proteins are major subunits within the Skp1-Cullin-1-F-box (SCF) E3 ubiquitin ligases that recognize particular substrates for ubiquitination and proteasomal degradation. Recently, we have shown that SCFFBXL19 targets Rac1 and RhoA, thus regulating Rac1 and RhoA ubiquitination and degradation. Here, we demonstrate the role of FBXL19 in the regulation of Rac3 site-specific ubiquitination and stability. Expression of TGFβ1 is associated with poor prognosis of esophageal cancer. TGFβ1 reduces tumor suppressor, E-cadherin, expression in various epithelial-derived cancers. Here we investigate the role of FBXL19-mediated Rac3 degradation in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells.

Conclusions

Collectively these data unveil that FBXL19 functions as an antagonist of Rac3 by regulating its stability and regulates the TGFβ1-induced E-cadherin down-regulation. This study will provide a new potential therapeutic strategy to regulate TGFβ1 signaling, thus suppressing esophageal tumorigenesis.

Methods

FBXL19-regulated endogenous and over-expressed Rac3 stability were determined by immunoblotting and co-immunoprecipitation. Esophageal cancer cells (OE19 and OE33) were used to investigate TGFβ1-induced E-cadherin down-regulation by Immunoblotting and Immunostaining.

Results

Overexpression of FBXL19 decreased endogenous and over-expressed Rac3 expression by interacting and polyubiquitinating Rac3, while down-regulation of FBXL19 suppressed Rac3 degradation. Lysine166 within Rac3 was identified as an ubiquitination acceptor site. The FBXL19 variant with truncation at the N-terminus resulted in an increase in Rac3 degradation; however, the FBXL19 variant with truncation at the C-terminus lost its ability to interact with Rac3 and ubiquitinate Rac3 protein. Further, we found that Rac3 plays a critical role in TGFβ1-induced E-cadherin down-regulation in esophageal cancer cells. Over-expression of FBXL19 attenuated TGFβ1-induced E-cadherin down-regulation and esophageal cancer cells elongation phenotype. Conclusions: Collectively these data unveil that FBXL19 functions as an antagonist of Rac3 by regulating its stability and regulates the TGFβ1-induced E-cadherin down-regulation. This study will provide a new potential therapeutic strategy to regulate TGFβ1 signaling, thus suppressing esophageal tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。