Time-Released Black Phosphorus Hydrogel Accelerates Myocardial Repairing through Antioxidant and Motivates Macrophage Polarization Properties

缓释黑磷水凝胶通过抗氧化加速心肌修复并激发巨噬细胞极化特性

阅读:7
作者:Jiahui Zhang, Di Sun, Yuhan Liao, Bingxin Cao, Ran Gao, Zhuanglin Zeng, Chuansheng Zheng, Yumiao Wei, Xiaopeng Guo

Abstract

The improvement of the myocardial microenvironment largely determines the prognosis of myocardial infarction (MI). After MI, early removal of excessive reactive oxygen species (ROS) in the microenvironment can alleviate oxidative stress injury and promote M2 phenotype polarization of macrophages, which is important for advocating myocardial repair. In this study, we combined traditional natural hydrogel materials chitosan (CS) and gelatin (Gel) to encapsulate polydopamine-modified black phosphorus nanosheets (BP@PDA). We designed an injectable composite gel (CS-Gel-BP@PDA) with a time-released ability to achieve in situ sustained-release BP@PDA in the area of MI. Utilizing the inflammation inhibition ability of CS-Gel itself and the high reactive activity of BP@PDA with ROS, continuous improvement of infarct microenvironment and myocardial repair were achieved. The studies in vivo revealed that, compared with the saline group, CS-Gel-BP@PDA group had alleviated myocardial fibrosis and infarct size and importantly improved cardiac function. Immunofluorescence results showed that the ROS level and inflammatory response in the microenvironment of the CS-Gel-BP@PDA group were decreased. In conclusion, our study demonstrated the time-released ability, antioxidative stress activity and macrophage polarization modulation of the novel composite hydrogel CS-Gel-BP@PDA, which provides inspiration for novel therapeutic modalities for MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。