Activation of the macroautophagic system in scrapie-infected experimental animals and human genetic prion diseases

绵羊痒病感染实验动物和人类遗传性朊病毒疾病中巨自噬系统的激活

阅读:10
作者:Yin Xu, Chan Tian, Shao-Bin Wang, Wu-Ling Xie, Yan Guo, Jin Zhang, Qi Shi, Cao Chen, Xiao-Ping Dong

Abstract

Macroautophagy is an important process for removing misfolded and aggregated protein in cells, the dysfunction of which has been directly linked to an increasing number of neurodegenerative disorders. However, the details of macroautophagy in prion diseases remain obscure. Here we demonstrated that in the terminal stages of scrapie strain 263K-infected hamsters and human genetic prion diseases, the microtubule-associated protein 1 light chain 3 (LC3) was converted from the cytosolic form to the autophagosome-bound membrane form. Macroautophagy substrate sequestosome 1 (SQSTM1) and polyubiquitinated proteins were downregulated in the brains of sick individuals, indicating enhanced macroautophagic protein degradation. The levels of mechanistic target of rapamycin (MTOR) and phosphorylated MTOR (p-MTOR) were significantly decreased, which implies that this enhancement of the macroautophagic response is likely through the MTOR pathway which is a negative regulator for the initiation of macroautophagy. Dynamic assays of the autophagic system in the brains of scrapie experimental hamsters after inoculation showed that alterations of the autophagic system appeared along with the deposits of PrP(Sc) in the infected brains. Immunofluorescent assays revealed specific staining of autophagosomes in neurons that were not colocalized with deposits of PrP(Sc) in the brains of scrapie infected hamsters, however, autophagosome did colocalize with PrP(Sc) in a prion-infected cell line after treatment with bafilomycin A(1). These results suggest that activation of macroautophagy in brains is a disease-correlative phenomenon in prion diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。