T Cell-Mediated Antitumor Immunity Cooperatively Induced By TGFβR1 Antagonism and Gemcitabine Counteracts Reformation of the Stromal Barrier in Pancreatic Cancer

TGFβR1拮抗剂和吉西他滨协同诱导的T细胞介导的抗肿瘤免疫可抵消胰腺癌基质屏障的重建

阅读:1
作者:Dandan Li ,Nicholas Schaub ,Theresa M Guerin ,Tashinga E Bapiro ,Frances M Richards ,Vicky Chen ,Keyur Talsania ,Parimal Kumar ,Debra J Gilbert ,Jerome J Schlomer ,Seong-Jin Kim ,Rebecca Sorber ,Yaroslav Teper ,Wendy Bautista ,Claudia Palena ,Chan-Young Ock ,Duncan I Jodrell ,Nathan Pate ,Monika Mehta ,Yongmei Zhao ,Serguei Kozlov ,Udo Rudloff

Abstract

The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFβ antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFβ inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFβ-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFβ inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFβ inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFβ inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFβ inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。