Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats

雷帕霉素通过调节大鼠半暗带中的细胞凋亡和自噬来预防脑卒中

阅读:5
作者:Meiling Wu, Huadan Zhang, Jiejing Kai, Feng Zhu, Jingyin Dong, Ziwei Xu, Michael Wong, Ling-Hui Zeng

Methods

Longa's middle cerebral artery occlusion (MCAO) method was conducted to induce the focal cerebral ischemia-reperfusion. Western blot analysis was used to examine the protein expression involving mTOR pathway, apoptosis, and autophagy-related proteins. TTC staining and Fluoro-Jade B staining was conducted to detect the infarct volume and cell apoptosis, respectively. Neurological function was measured by modified neurological severity score and left-biased swing.

Objective

Whether activation or inhibition of the mTOR pathway is beneficial to ischemic injury remains controversial. It may result from the different reaction of ischemic penumbra and core to modulation of mTOR pathway after cerebral ischemia-reperfusion injury in rats.

Results

mTOR signaling pathway was activated in ischemic penumbra and decreased in ischemic core after ischemia and ischemia-reperfusion. Ischemia-reperfusion injury induced the increase in cleaved caspase 9 and caspase 3 both in ischemic penumbra and in ischemic core, whereas the expression of phosphorylated ULK1, Beclin 1 and LC3-II was decreased. Rapamycin pre or postadministration inhibited the overactivation of mTOR pathway in ischemic penumbra. Ameliorated neurological function and reduced infarct volume were observed after pre or postrapamycin treatment. Rapamycin markedly decreased the number of FJB-positive cells and the expression of cleaved caspase-3 and cleaved caspase-9 proteins as well as increased the activation of autophagy reflected by ULK1, Beclin-1 and LC3. Interpretation: mTOR signaling pathway was activated in ischemic penumbra after cerebral ischemia-reperfusion injury in rats. mTOR inhibitor rapamycin significantly decreased the mTOR activation and infarct volume and subsequently improved neurological function. These results may relate to inhibition of neuron apoptosis and activation of autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。