Therapeutic potentials of iridoids derived from Rubiaceae against in vitro and in vivo inflammation: A scoping review

茜草科环烯醚萜类化合物对体内和体外炎症的治疗潜力:范围综述

阅读:6
作者:Aisyah Jaafar, Muhammad Amal Zulkipli, Fazleen Haslinda Mohd Hatta, Aisyah Hasyila Jahidin, Nurul Alimah Abdul Nasir, Mizaton Hazizul Hasan

Abstract

Acute inflammation may develop into chronic, life-threatening inflammation-related diseases if left untreated or if there are persistent triggering factors. Cancer, diabetes mellitus, stroke, cardiovascular diseases, and neurodegenerative disorders are some of the inflammation-related diseases affecting millions of people worldwide. Despite that, conventional medical therapy such as non-steroidal anti-inflammatory drugs (NSAIDs) is associated with serious adverse effects; hence, there is an urgent need for a newer and safer therapeutic alternative from natural sources. Iridoids are naturally occurring heterocyclic monoterpenoids commonly found in Rubiaceae plants. Plant extracts from the Rubiaceae family were demonstrated to have medicinal benefits against neurodegeneration, inflammation, oxidative stress, hyperglycaemia, and cancer. However, the therapeutic effects of natural iridoids derived from Rubiaceae as well as their prospective impacts on inflammation in vitro and in vivo have not been thoroughly explored. The databases of PubMed, Scopus, and Web of Science were searched for pertinent articles in accordance with PRISMA-ScR guidelines. A total of 31 pertinent articles from in vitro and in vivo studies on the anti-inflammatory potentials of iridoids from Rubiaceae were identified. According to current research, genipin, geniposide, and monotropein are the most researched iridoids from Rubiaceae that reduce inflammation. These iridoids primarily act by attenuating inflammatory cytokines and mediators via inhibition of the NF-κB signalling pathway in various disease models. A comprehensive overview of the current research on the anti-inflammatory properties of iridoids from the Rubiaceae family is presented in this review, highlighting the characteristics of the experimental models used as well as the mechanisms of action of these iridoids. To develop an alternative therapeutic agent from iridoids, more studies are needed to elucidate the effects and mechanism of action of iridoids in a wide variety of experimental models as well as in clinical studies pertaining to inflammation-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。