The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity

胆汁盐输出泵基因抑制在药物引起的胆汁淤积性肝毒性中的作用

阅读:5
作者:Brandy Garzel, Hui Yang, Lei Zhang, Shiew-Mei Huang, James E Polli, Hongbing Wang

Abstract

The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between drug-induced cholestasis and attenuated BSEP activity has been proposed. However, whether repression of BSEP transcription would contribute to drug-induced cholestasis is largely unknown. In this study, we selected 30 drugs previously reported as BSEP inhibitors to evaluate their effects on BSEP expression, farnesoid X receptor (FXR) activation, and correlations to clinically reported liver toxicity. Our results indicate that of the 30 BSEP inhibitors, five exhibited potent repression of BSEP expression (≥60% repression), ten were moderate repressors (20-60% repression), whereas others had negligible effects (≤20% repression). Of importance, two drugs (troglitazone and benzbromarone), previously withdrawn from the market because of liver injury, are among the potent repressors. Further investigation of the five potent repressors revealed that transcriptional repression of BSEP by lopinavir and troglitazone may occur through their interaction with FXR, whereas others are via FXR-independent yet unidentified pathways. Our data suggest that in addition to functional inhibition, repression of BSEP expression may play an important role in drug-induced cholestatic liver toxicity. Thus, a combination of the two would reveal a more accurate prediction of drug-induced cholestasis than does either repression or inhibition alone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。