Synergistic Effects and Mechanisms of Action of Rutin with Conventional Antibiotics Against Escherichia coli

芦丁与常规抗生素抗大肠杆菌的协同作用及作用机制

阅读:5
作者:Lankun Yi, Yubin Bai, Xu Chen, Weiwei Wang, Chao Zhang, Zixuan Shang, Zhijin Zhang, Jiajing Li, Mingze Cao, Zhen Zhu, Jiyu Zhang

Abstract

Rutin is a widely known plant secondary metabolite that exhibits multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing rutin, and further explored the mechanisms behind this synergy. In vitro antibacterial test results of rutin showed that the ranges of minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) are 0.125-1 and 0.125-2 mg/mL, respectively. However, rutin and amikacin have a significant synergistic effect, with a fractional inhibitory concentration index (FICI) range of 0.1875-0.5. The time bactericidal curve proved that the combination of rutin and amikacin inhibited bacterial growth within 8 h. Scanning electron microscopy (SEM) revealed that a low-dose combination treatment could disrupt the cell membrane of Escherichia coli (E. coli). A comprehensive analysis using alkaline phosphatase (AKP), K+, and a protein leakage assay revealed that co-treatment destroyed the cell membrane of E. coli, resulting in the significant leakage of AKP, intracellular K+, and proteins. Moreover, confocal laser scanning microscopy (CLSM) and red-green cell ratio analysis indicated severe damage to the E. coli cell membrane following the co-treatment of rutin and amikacin. This study indicates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect, which could significantly control antibiotic resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。