Background
Cytochrome c (Cyt c) is a mobile component of the electron transport chain (ETC.) which contains a tightly coordinated heme iron. In pathologic settings, a key ligand of the cyt c's heme iron, methionine (Met80), is oxidized allowing cyt c to participate in reactions as a peroxidase with cardiolipin as a target. Myocardial ischemia (ISC)
Conclusions
Increase in intra-mitochondrial ROS coupled with electron flow into cyt c, oxidizes cyt c followed by depletion of cardiolipin. ISC-REP increases methionine oxidation, supporting that cyt c peroxidase activity can form in the intact heart. General significance: This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.
Methods
Mitochondria were incubated with specific substrates and inhibitors to test the contributions of ROS and electron flow into cyt c. Subsequently, cyt c and cardiolipin were analyzed. To test the pathophysiologic relevance, mouse hearts that underwent ISC-REP were tested for methionine oxidation in cyt c.
Results
The combination of substrate/inhibitor showed that ROS production and electron flux through cyt c are essential for the oxidation of methionine residues that lead to cardiolipin depletion. The content of cyt c methionine oxidation increases following ISC-REP in the intact heart. Conclusions: Increase in intra-mitochondrial ROS coupled with electron flow into cyt c, oxidizes cyt c followed by depletion of cardiolipin. ISC-REP increases methionine oxidation, supporting that cyt c peroxidase activity can form in the intact heart. General significance: This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.
Significance
This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.
