Application of an organotypic ocular perfusion model to assess intravitreal drug distribution in human and animal eyes

应用器官型眼灌注模型评估人类和动物眼内玻璃体内药物分布

阅读:4
作者:D Chan, G J Won, A T Read, C R Ethier, E Thackaberry, S R Crowell, H Booler, V Bantseev, J M Sivak

Abstract

Intravitreal (ITV) drug delivery is a new cornerstone for retinal therapeutics. Yet, predicting the disposition of formulations in the human eye remains a major translational hurdle. A prominent, but poorly understood, issue in pre-clinical ITV toxicity studies is unintended particle movements to the anterior chamber (AC). These particles can accumulate in the AC to dangerously raise intraocular pressure. Yet, anatomical differences, and the inability to obtain equivalent human data, make investigating this issue extremely challenging. We have developed an organotypic perfusion strategy to re-establish intraocular fluid flow, while maintaining homeostatic pressure and pH. Here, we used this approach with suitably sized microbeads to profile anterior and posterior ITV particle movements in live versus perfused porcine eyes, and in human donor eyes. Small-molecule suspensions were then tested with the system after exhibiting differing behaviours in vivo. Aggregate particle size is supported as an important determinant of particle movements in the human eye, and we note these data are consistent with a poroelastic model of bidirectional vitreous transport. Together, this approach uses ocular fluid dynamics to permit, to our knowledge, the first direct comparisons between particle behaviours from human ITV injections and animal models, with potential to speed pre-clinical development of retinal therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。