An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity

用于研究高密度肽微阵列引导的相互作用模式和抗蛇毒交叉反应的交互式数据库

阅读:8
作者:Kamille E Krause, Timothy P Jenkins, Carina Skaarup, Mikael Engmark, Nicholas R Casewell, Stuart Ainsworth, Bruno Lomonte, Julián Fernández, José M Gutiérrez, Ole Lund, Andreas H Laustsen

Abstract

Snakebite envenoming is a major neglected tropical disease that affects millions of people every year. The only effective treatment against snakebite envenoming consists of unspecified cocktails of polyclonal antibodies purified from the plasma of immunized production animals. Currently, little data exists on the molecular interactions between venom-toxin epitopes and antivenom-antibody paratopes. To address this issue, high-density peptide microarray (hdpm) technology has recently been adapted to the field of toxinology. However, analysis of such valuable datasets requires expert understanding and, thus, complicates its broad application within the field. In the present study, we developed a user-friendly, and high-throughput web application named "Snake Toxin and Antivenom Binding Profiles" (STAB Profiles), to allow straight-forward analysis of hdpm datasets. To test our tool and evaluate its performance with a large dataset, we conducted hdpm assays using all African snake toxin protein sequences available in the UniProt database at the time of study design, together with eight commercial antivenoms in clinical use in Africa, thus representing the largest venom-antivenom dataset to date. Furthermore, we introduced a novel method for evaluating raw signals from a peptide microarray experiment and a data normalization protocol enabling intra-microarray and even inter-microarray chip comparisons. Finally, these data, alongside all the data from previous similar studies by Engmark et al., were preprocessed according to our newly developed protocol and made publicly available for download through the STAB Profiles web application (http://tropicalpharmacology.com/tools/stab-profiles/). With these data and our tool, we were able to gain key insights into toxin-antivenom interactions and were able to differentiate the ability of different antivenoms to interact with certain toxins of interest. The data, as well as the web application, we present in this article should be of significant value to the venom-antivenom research community. Knowledge gained from our current and future analyses of this dataset carry the potential to guide the improvement and optimization of current antivenoms for maximum patient benefit, as well as aid the development of next-generation antivenoms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。