A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis

代谢通量分析区间模型中限制氨基酸生物合成的综合评估

阅读:6
作者:Mathias Lehnen, Birgitta E Ebert, Lars M Blank

Abstract

Recent advances in the availability and applicability of genetic tools for non-conventional yeasts have raised high hopes regarding the industrial applications of such yeasts; however, quantitative physiological data on these yeasts, including intracellular flux distributions, are scarce and have rarely aided in the development of novel yeast applications. The compartmentation of eukaryotic cells adds to model complexity. Model constraints are ideally based on biochemical evidence, which is rarely available for non-conventional yeast and eukaryotic cells. A small-scale model for 13C-based metabolic flux analysis of central yeast carbon metabolism was developed that is universally valid and does not depend on localization information regarding amino acid anabolism. The variable compartmental origin of traced metabolites is a feature that allows application of the model to yeasts with uncertain genomic and transcriptional backgrounds. The presented test case includes the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Hansenula polymorpha. Highly similar flux solutions were computed using either a model with undefined pathway localization or a model with constraints based on curated (S. cerevisiae) or computationally predicted (H. polymorpha) localization information, while false solutions were found with incorrect localization constraints. These results indicate a potentially adverse effect of universally assuming Saccharomyces-like constraints on amino acid biosynthesis for non-conventional yeasts and verify the validity of neglecting compartmentation constraints using a small-scale metabolic model. The model was specifically designed to investigate the intracellular metabolism of wild-type yeasts under various growth conditions but is also expected to be useful for computing fluxes of other eukaryotic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。