Two rice cultivars recruit different rhizospheric bacteria to promote aboveground regrowth after mechanical defoliation

两种水稻品种在机械落叶后招募不同的根际细菌来促进地上再生长

阅读:6
作者:Changjin Jiang, Fei Wang, Jinling Tian, Wanyuan Zhang, Kabin Xie

Abstract

Plants have evolved the ability to regrow after mechanical defoliation and environmental stresses. However, it is unclear whether and how defoliated plants exploit beneficial microbiota from the soil to promote aboveground regrowth. Here, we compared the defoliation-triggered changes in the root exudation and bacterial microbiome of two rice cultivars (Oryza sativa L ssp.), indica/xian cultivar Minghui63 and japonica/geng cultivar Nipponbare. The results show that reciprocal growth promotion existed between defoliated Minghui63 seedlings and soil bacteria. After the leaves were removed, the Minghui63 seedlings displayed approximately 1.5- and 2.1-fold higher root exudation and leaf regrowth rates, respectively, than did the Nipponbare seedlings. In field trials, Minghui63 and Nipponbare enriched taxonomically and functionally distinct bacteria in the rhizosphere and root. In particular, Minghui63 rhizosphere and root communities depleted bacteria whose functions are related to xenobiotics biodegradation and metabolism. The microbiome data implied that the bacterial family Rhodocyclaceae was specifically enriched during the regrowth of defoliated Minghui63 rice. We further isolated a Rhodocyclaceae strain, Uliginosibacterium gangwonense MDD1, from rice root. Compared with germ-free conditions, MDD1 inoculation promoted the aboveground regrowth of defoliated Minghui63 by 61% but had a weaker effect on Nipponbare plants, suggesting cultivar-specific associations between regrowth-promoting bacteria and rice. This study provides novel insight into microbiota‒root‒shoot communication, which is implicated in the belowground microbiome and aboveground regrowth in defoliated rice. These data will be helpful for microbiome engineering to increase rice resilience to defoliation and environmental stresses.IMPORTANCEAs sessile organisms, plants face a multitude of abiotic and biotic stresses which often result in defoliation. To survive, plants have evolved the ability to regrow leaves after stresses and wounding. Previous studies revealed that the rhizosphere microbiome affected plant growth and stress resilience; however, how belowground microbiota modulates the aboveground shoot regrowth is unclear. To address this question, we used rice, an important crop worldwide, to analyze the role of rhizosphere microbiota in leaf regrowth after defoliation. Our data indicate mutual growth promotion between defoliated rice and rhizosphere bacteria and such beneficial effect is cultivar specific. The microbiome analysis also led us to find a Uliginosibacterium gangwonense strain that promoted rice cv. MH63 leaf regrowth. Our findings therefore present a novel insight into plant-microbiome function and provide beneficial strains that potentially enhance rice stress resilience.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。