Identification of Genes Promoting Growth of Ustilago maydis on Biomolecules Released from Cells Killed by Oxidation

鉴定促进玉米黑粉菌在氧化死亡细胞释放的生物分子上生长的基因

阅读:5
作者:Jelena Malesevic, Milorad Kojic, Stefan Stanovcic, Natalija Azanjac, Mira Milisavljevic

Abstract

Much headway has been made in understanding the numerous strategies that enable microorganisms to counteract various types of environmental stress, but little is known about how microbial populations recover after a massive death caused by exposure to extreme conditions. Using the yeast-like fungus Ustilago maydis as a model, our recent post-stress regrowth under starvation (RUS) studies have demonstrated that this organism reconstitutes devastated populations with remarkable efficiency. Subsequently, we have identified four RUS-gene products. Two of these, Did4 and Tbp1, play parallel roles in protecting the genome. To identify additional molecular components, we took a molecular-genetic and a transcriptomic approach. By employing a simple and novel screening method, we identified five RUS-deficient mutants (snf8, slm1, vrg4, snf5, hsf1), three of which (snf8, slm1, and hsf1) displayed sensitivity to different genotoxic agents, indicating that the corresponding gene products have roles in genome protection. The global transcriptomic changes of cells grown in supernatants derived from peroxide-treated cell suspensions revealed sets of uniquely expressed genes. Importantly, among the genes induced by the substrates was Chk1, which encodes a protein kinase required for checkpoint-mediated cell cycle arrest in response to DNA damage. Mutants of U. maydis deleted of Chk1 are severely incapacitated in RUS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。