Activity and phosphatidylcholine transfer protein interactions of skeletal muscle thioesterase Them2 enable hepatic steatosis and insulin resistance

骨骼肌硫酯酶Them2的活性和磷脂酰胆碱转运蛋白相互作用导致肝脂肪变性和胰岛素抵抗

阅读:26
作者:Yang Xie, Xu Liu, Wenpeng Liu, Logan R Carr, Luke P Lee, Norihiro Imai, Eric A Ortlund, David E Cohen

Abstract

Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that WT, but not N50A/D65A Them2, promoted high-fat diet-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT than N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles. Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for extracellular vesicles to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights, whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as attractive targets for managing metabolic dysfunction-associated steatotic liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。