Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice

转基因敲低心脏钠/葡萄糖协同转运蛋白 1 (SGLT1) 可减轻 PRKAG2 心肌病,而转基因过表达心脏 SGLT1 则会导致小鼠病理性肥大和功能障碍

阅读:5
作者:Mohun Ramratnam, Ravi K Sharma, Stephen D'Auria, So Jung Lee, David Wang, Xue Yin N Huang, Ferhaan Ahmad

Background

The expression of a novel cardiac glucose transporter, SGLT1, is increased in glycogen storage cardiomyopathy secondary to mutations in PRKAG2. We sought to determine the role of SGLT1 in the pathogenesis of PRKAG2 cardiomyopathy and its role in cardiac structure and function.

Conclusions

Cardiac knockdown of SGLT1 in a murine model of PRKAG2 cardiomyopathy attenuates the disease phenotype, implicating SGLT1 in the pathogenesis. Overexpression of SGLT1 causes pathologic cardiac hypertrophy and left ventricular failure that is reversible. This is the first report of cardiomyocyte-specific transgenic knockdown of a target gene.

Results

Transgenic mice with cardiomyocyte-specific overexpression of human T400N mutant PRKAG2 cDNA (TG(T400N)) and transgenic mice with cardiomyocyte-specific RNA interference knockdown of SGLT1 (TG(SGLT1-DOWN)) were crossed to produce double-transgenic mice (TG(T400N)/TG(SGLT1-DOWN)). Tet-off transgenic mice conditionally overexpressing cardiac SGLT1 in the absence of doxycycline were also constructed (TG(SGLT-ON)). Relative to TG(T400N) mice, TG(T400N)/TG(SGLT1-DOWN) mice exhibited decreases in cardiac SGLT1 expression (63% decrease, P<0.05), heart/body weight ratio, markers of cardiac hypertrophy, and cardiac glycogen content. TG(T400N)/TG(SGLT1-DOWN) mice had less left ventricular dilation at age 12 weeks compared to TG(T400N) mice. Relative to wildtype (WT) mice, TG(SGLT1-ON) mice exhibited increases in heart/body weight ratio, glycogen content, and markers of cardiac hypertrophy at ages 10 and 20 weeks. TG(SGLT1-ON) mice had increased myocyte size and interstitial fibrosis, and progressive left ventricular dysfunction. When SGLT1 was suppressed after 10 weeks of overexpression (TG(SGLT1-ON/OFF)), there was a reduction in cardiac hypertrophy and improvement in left ventricular failure. Conclusions: Cardiac knockdown of SGLT1 in a murine model of PRKAG2 cardiomyopathy attenuates the disease phenotype, implicating SGLT1 in the pathogenesis. Overexpression of SGLT1 causes pathologic cardiac hypertrophy and left ventricular failure that is reversible. This is the first report of cardiomyocyte-specific transgenic knockdown of a target gene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。