Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity

硫酸肝素 6-O-内硫酸酯酶:体内离散活性和功能协同作用

阅读:5
作者:William C Lamanna, Rebecca J Baldwin, Michael Padva, Ina Kalus, Gerdy Ten Dam, Toin H van Kuppevelt, John T Gallagher, Kurt von Figura, Thomas Dierks, Catherine L R Merry

Abstract

HS (heparan sulfate) is essential for normal embryonic development. This requirement is due to the obligatory role for HS in the signalling pathways of many growth factors and morphogens that bind to sulfated domains in the HS polymer chain. The sulfation patterning of HS is determined by a complex interplay of Golgi-located N- and O-sulfotransferases which sulfate the heparan precursor and cell surface endosulfatases that selectively remove 6-O-sulfates from mature HS chains. In the present study we generated single or double knock-out mice for the two murine endosulfatases mSulf1 and mSulf2. Detailed structural analysis of HS from mSulf1-/- fibroblasts showed a striking increase in 6-O-sulfation, which was not seen in mSulf2-/- HS. Intriguingly, the level of 6-O-sulfation in the double mSulf1-/-/2-/- HS was significantly higher than that observed in the mSulf1-/- counterpart. These data imply that mSulf1 and mSulf2 are functionally co-operative. Unlike their avian orthologues, mammalian Sulf activities are not restricted to the highly sulfated S-domains of HS. Mitogenesis assays with FGF2 (fibroblast growth factor 2) revealed that Sulf activity decreases the activating potential of newly-synthesized HS, suggesting an important role for these enzymes in cell growth regulation in embryonic and adult tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。