Single-cell transcriptome sequencing reveals the immune microenvironment in bronchoalveolar lavage fluid of checkpoint inhibitor-related pneumonitis

单细胞转录组测序揭示检查点抑制剂相关性肺炎支气管肺泡灌洗液中的免疫微环境

阅读:19
作者:Linpeng Zheng, Fenglin Lin, Dingqin Cai, Longyao Zhang, Chenrui Yin, Yaxian Qi, Lingyou Sun, Lingchen Li, Xiewan Chen, Jianbo Zhu, Jianguo Sun

Conclusions

Utilizing single-cell sequencing of BALF, we discovered an enriched population of aberrant basaloid cells in CIP-S patients, which had not been previously reported. Aberrant basaloid cells may upregulate SOX9 via CXCL3/5-CXCR2 to recruit and activate neutrophils, and further activate the immune system, resulting in CIP-S. This finding could identify new targets for stratified treatment of CIP patients, holding promise of a novel approach for clinical guidance.

Methods

Herein, we employed single-cell RNA sequencing (scRNA-seq) on bronchoalveolar lavage fluid (BALF) from CIP patients across varying severity levels, aiming to elucidate underlying immune environment and mechanisms of CIP progression at cellular and molecular levels. Findings: Totally, 121,409 high qualified cells from BALF of 11 patients were annotated and categorized into five major cell types. Severe CIP (CIP-S) cases have a significant increase in the percentage of unreported epithelial cells in their bronchoalveolar lavage fluid compared with mild CIP (CIP-M) cases. These cells were defined as aberrant basaloid cells. They upregulated SOX9, increased the expression of CXCL3/5, recruited neutrophils, and activated the immune system. Additionally, macrophages in the CIP-S group had stronger antigen-presenting abilities and resulted in more CD8 + effective T cells infiltrated. Conclusions: Utilizing single-cell sequencing of BALF, we discovered an enriched population of aberrant basaloid cells in CIP-S patients, which had not been previously reported. Aberrant basaloid cells may upregulate SOX9 via CXCL3/5-CXCR2 to recruit and activate neutrophils, and further activate the immune system, resulting in CIP-S. This finding could identify new targets for stratified treatment of CIP patients, holding promise of a novel approach for clinical guidance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。