Protective effects of chlorogenic acid on inflammatory responses induced by Staphylococcus aureus and milk protein synthesis in bovine mammary epithelial cells

绿原酸对金黄色葡萄球菌诱发的牛乳腺上皮细胞炎症反应及乳蛋白合成的保护作用

阅读:6
作者:Qiang Ji, Meng Zhang, Yanfeng Wang, Yuhao Chen, Liping Wang, Xinyue Lu, Linfeng Bai, Manshulin Wang, Lili Bao, Huifang Hao, Zhigang Wang

Abstract

Staphylococcus aureus (S. aureus) is a major mastitis-causing pathogen in dairy cows. Dairy cows with mastitis suffer from a decrease in milk yield and protein content. Chlorogenic acid (CGA) is a natural product with anti-inflammatory effects. In this study, we examined the function and mechanism of CGA with regard to its anti-inflammatory effects and evaluated its protective function in milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were cultured with and without infection by S. aureus and CGA, and extracellular inflammatory cytokines and amino acids in the medium and milk proteins were determined by ELISA. The function of IL-10RA in anti-inflammatory processes and of SF-1 in milk protein synthesis was assessed by gene silencing. The activity of mTORC1, NF-κB, and STAT5 was examined by western blot. S. aureus caused intracellular infection and upregulated TNF-α, IL-1β, IL-6, and IL-8, whereas uptake of amino acids and milk protein synthesis were suppressed. CGA mitigated the S. aureus-induced inflammatory response and milk protein synthesis in vitro and in vivo. CGA alleviated S. aureus-induced inhibition of mTORC1 and STAT5 and upregulated IL-10 and IL-10RA. In addition, SF-1 was predicted to be a transcription factor of the milk protein-encoding genes α-LA, β-LG, and CSN2. S. aureus downregulated SF-1 and CGA reversed the decline in milk protein synthesis due to SF-1 knockdown. Thus, CGA mitigates the inflammatory response that is induced by S. aureus and protects the uptake of amino acids and milk protein synthesis in BMECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。