IFN-γ primes macrophage activation by increasing phosphatase and tensin homolog via downregulation of miR-3473b

IFN-γ 通过下调 miR-3473b 增加磷酸酶和张力蛋白同源物来促进巨噬细胞活化

阅读:4
作者:Cong Wu, Yiquan Xue, Pin Wang, Li Lin, Qiuyan Liu, Nan Li, Junfang Xu, Xuetao Cao

Abstract

The classical activation of macrophages, one of major innate effector cells, requires IFN-γ pretreatment (priming) and subsequent TLR stimuli (triggering). The priming effect of IFN-γ can promote macrophages to secrete higher level of proinflammatory cytokines but lower level of the anti-inflammatory cytokines, enhancing microbicidal and tumoricidal activity of macrophages. However, the underlying molecular mechanisms for IFN-γ-priming effect on macrophage activation remain to be fully understood. microRNAs (miRNAs) are now emerging as important regulators in immune response, including signaling transduction in immune cell function. In this study, we explored the effect of IFN-γ on miRNA expression profiling in macrophages and tried to identify the definite miRNA involved in the priming effect of IFN-γ. We discovered that miR-3473b, which was significantly downregulated after IFN-γ priming, could attenuate the priming effect of IFN-γ. miR-3473b promoted Akt/glycogen synthase kinase 3 signaling and IL-10 production through directly targeting phosphatase and tensin homolog (PTEN) to suppress activation of macrophages and inflammatory response. Our data indicate that IFN-γ beefs up macrophage innate response and cytotoxicity by downregulating miR-3473b to release PTEN from suppression, and then the increase of PTEN contributes to the full activation of IFN-γ-primed macrophages. Our results provide mechanistic insight to priming effect of IFN-γ on macrophage classical activation by identifying an IFN-γ/miR-3473b/PTEN regulatory loop in the regulation of macrophage function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。