Model order reduction of thermo-mechanical models with parametric convective boundary conditions: focus on machine tools

具有参数对流边界条件的热机械模型的模型阶降阶:重点关注机床

阅读:5
作者:Pablo Hernández-Becerro, Daniel Spescha, Konrad Wegener

Abstract

Thermo-mechanical finite element (FE) models predict the thermal behavior of machine tools and the associated mechanical deviations. However, one disadvantage is their high computational expense, linked to the evaluation of the large systems of differential equations. Therefore, projection-based model order reduction (MOR) methods are required in order to create efficient surrogate models. This paper presents a parametric MOR method for weakly coupled thermo-mechanical FE models of machine tools and other similar mechatronic systems. This work proposes a reduction method, Krylov Modal Subspace (KMS), and a theoretical bound of the reduction error. The developed method addresses the parametric dependency of the convective boundary conditions using the concept of system bilinearization. The reduced-order model reproduces the thermal response of the original FE model in the frequency range of interest for any value of the parameters describing the convective boundary conditions. Additionally, this paper investigates the coupling between the reduced-order thermal system and the mechanical response. A numerical example shows that the reduced-order model captures the response of the original system in the frequency range of interest.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。