Model order reduction of thermo-mechanical models with parametric convective boundary conditions: focus on machine tools

具有参数对流边界条件的热机械模型的模型阶降阶:重点关注机床

阅读:9
作者:Pablo Hernández-Becerro, Daniel Spescha, Konrad Wegener

Abstract

Thermo-mechanical finite element (FE) models predict the thermal behavior of machine tools and the associated mechanical deviations. However, one disadvantage is their high computational expense, linked to the evaluation of the large systems of differential equations. Therefore, projection-based model order reduction (MOR) methods are required in order to create efficient surrogate models. This paper presents a parametric MOR method for weakly coupled thermo-mechanical FE models of machine tools and other similar mechatronic systems. This work proposes a reduction method, Krylov Modal Subspace (KMS), and a theoretical bound of the reduction error. The developed method addresses the parametric dependency of the convective boundary conditions using the concept of system bilinearization. The reduced-order model reproduces the thermal response of the original FE model in the frequency range of interest for any value of the parameters describing the convective boundary conditions. Additionally, this paper investigates the coupling between the reduced-order thermal system and the mechanical response. A numerical example shows that the reduced-order model captures the response of the original system in the frequency range of interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。