Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip

芯片上集成病原体的捕获、浓缩、聚合酶链式反应和毛细管电泳分析

阅读:5
作者:Nathaniel Beyor, Lina Yi, Tae Seok Seo, Richard A Mathies

Abstract

A laboratory-on-a-chip system for pathogen detection is presented that integrates cell preconcentration, purification, polymerase chain reaction (PCR), and capillary electrophoretic (CE) analysis. The microdevice is composed of micropumps and valves, a cell capture structure, a 100 nL PCR reactor, and a 5 cm long CE column for amplicon separation. Sample volumes ranging from 10 to 100 microL are introduced and driven through a fluidized bed of magnetically constrained immunomagnetic beads where the target cells are captured. After cell capture, beads are transferred using the on-chip pumps to the PCR reactor for DNA amplification. The resulting PCR products are electrophoretically injected onto the CE column for separation and detection of Escherichia coli K12 and E. coli O157 targets. A detection limit of 0.2 cfu/microL is achieved using the E. coli O157 target and an input volume of 50 microL. Finally, the sensitive detection of E. coli O157 in the presence of K12 at a ratio of 1:1000 illustrates the capability of our system to identify target cells in a high commensal background. This cell capture-PCR-CE microsystem is a significant advance in the development of rapid, sensitive, and specific laboratory-on-a-chip devices for pathogen detection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。