Hsa_circ_0003220 Drives Chemoresistance of Human NSCLC Cells by Modulating miR-489-3p/IGF1

Hsa_circ_0003220 通过调节 miR-489-3p/IGF1 驱动人类 NSCLC 细胞产生化学耐药性

阅读:7
作者:Shaofeng Xia, Chenliang Wang

Abstract

Circular RNAs (circRNAs) have been shown to have critical roles in developing cancer and treatment resistance in an increasing body of research. The aim was to look into the functions and processes of hsa_circ_0003220 in the non-small cell lung cancer (NSCLC) chemoresistance. The NSCLC cell lines H460 and A549 were employed in present work. hsa_circ_0003220, miR-489-3p, and insulin-like growth factors (IGF1) mRNA levels were assessed with a quantitative real time polymerase chain reaction (qRT-PCR). The cisplatin, docetaxel, and paclitaxel (PTX) resistances were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the enzyme linked immunosorbent assay (ELISA) test measured IGF1 expression. In order to corroborate the miR-489-3p relation with hsa_circ_0003220 or IGF1, a dual-luciferase reporter method was applied. The level of hsa_circ_0003220 was raised in cells and tissues from PTX-resistant (PR) NSCLC. In PR NSCLC cells, hsa_circ_0003220 knockdown reduced chemoresistance. For the purpose of the mechanism study, hsa_circ_0003220 knockdown substantially reduced IGF1 expression via miR-489-3p sponging, reducing chemoresistance in PR NSCLC cells. By controlling the miR-489-3p/IGF1 axis, hsa_circ_0003220 knockdown helped NSCLC overcome chemoresistance, suggesting a potential circRNA-targeted therapy for the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。