Regulation of alternative splicing of Gtf2ird1 and its impact on slow muscle promoter activity

Gtf2ird1 可变剪接的调控及其对慢肌启动子活性的影响

阅读:6
作者:Enoch S E Tay, Kim L Guven, Nanthakumar Subramaniam, Patsie Polly, Laura L Issa, Peter W Gunning, Edna C Hardeman

Abstract

A human MusTRD (muscle TFII-I repeat domain (RD)-containing protein) isoform was originally identified in a yeast one-hybrid screen as a protein that binds the slow fibre-specific enhancer of the muscle gene troponin I slow [O'Mahoney, Guven, Lin, Joya, Robinson, Wade and Hardeman (1998) Mol. Cell. Biol. 18, 6641-6652]. MusTRD shares homology with the general transcription factor TFII-I by the presence of diagnostic I-RDs [Roy (2001) Gene 274, 1-13]. The human gene encoding MusTRD, GTF2IRD1 ( WBSCR11 / GTF3 ), was subsequently located on chromosome 7q11.23, a region deleted in the neurodegenerative disease, Williams-Beuren Syndrome [Osborne, Campbell, Daradich, Scherer, Tsui, Franke, Peoples, Francke, Voit, Kramer et al. (1999) Genomics 57, 279-284; Franke, Peoples and Francke (1999) Cytogenet. Cell. Genet. 86, 296-304; Tassabehji, Carette, Wilmot, Donnai, Read and Metcalfe (1999) Eur. J. Hum. Genet. 7, 737-747]. The haploinsufficiency of MusTRD has been implicated in the myopathic aspect of this disease, which manifests itself in symptoms such as lowered resistance to fatigue, kyphoscoliosis, an abnormal gait and joint contractures [Tassabehji, Carette, Wilmot, Donnai, Read and Metcalfe (1999) Eur. J. Hum. Genet. 7, 737-747]. Here, we report the identification of 11 isoforms of MusTRD in mouse skeletal muscles. These isoforms were isolated from a mouse skeletal muscle cDNA library and reverse transcription-PCR on RNA from various adult and embryonic muscles. The variability in these isoforms arises from alternative splicing of a combination of four cassettes and two mutually exclusive exons, all in the 3' region of the primary transcript of Gtf2ird1, the homologous mouse gene. The expression of some of these isoforms is differentially regulated spatially, suggesting individual regulation of the expression of these isoforms. Co-transfection studies in C2C12 muscle cell cultures reveal that isoforms differentially regulate muscle fibre-type-specific promoters. This indicates that the presence of different domains of MusTRD influences the activity exerted by this molecule on multiple promoters active in skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。