Yes-associated protein contributes to magnesium alloy-derivedinflammation in endothelial cells

Yes 相关蛋白导致内皮细胞中镁合金衍生的炎症

阅读:6
作者:Hongchi Yu, Zhe Hou, Nuoya Chen, Rifang Luo, Li Yang, Michael Miao, Xiaoyi Ma, Lifeng Zhou, Fugui He, Yang Shen, Xiaoheng Liu, Yunbing Wang

Abstract

Magnesium alloy (Mg alloy) has attracted massive attention in the potential applications of cardiovascular stents because of its good biocompatibility and degradability. However, whether and how the Mg alloy induces inflammation in endothelial cells remains unclear. In the present work, we investigated the activation of Yes-associated protein (YAP) upon Mg alloy stimuli and unveiled the transcriptional function in Mg alloy-induced inflammation. Quantitative RT-PCR, western blotting and immunofluorescence staining showed that Mg alloy inhibited the Hippo pathway to facilitate nuclear shuttling and activation of YAP in human coronary artery endothelial cells (HCAECs). Chromatin immunoprecipitation followed sequencing was carried out to explore the transcriptional function of YAP in Mg alloy-derived inflammation. This led to the observation that nuclear YAP further bonded to the promoter region of inflammation transcription factors and co-transcription factors. This binding event activated their transcription and modified mRNA methylation of inflammation-related genes through regulating the expression of N6-methyladenosine modulators (METTL3, METTL14, FTO and WTAP). This then promoted inflammation-related gene expression and aggravated inflammation in HCAECs. In YAP deficiency cells, Mg alloy-induced inflammation was reduced. Collectively, our data suggest that YAP contributes to the Mg alloy-derived inflammation in HCAECs and may provide a potential therapeutic target that alleviates inflammation after Mg alloy stent implantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。