ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells

ARID1A 以 AP1 依赖的方式促进结直肠癌细胞中的 KRAS 信号调节增强子活性

阅读:6
作者:Madhobi Sen, Xin Wang, Feda H Hamdan, Jacobe Rapp, Jessica Eggert, Robyn Laura Kosinsky, Florian Wegwitz, Ana Patricia Kutschat, Fereshteh S Younesi, Jochen Gaedcke, Marian Grade, Elisabeth Hessmann, Argyris Papantonis, Philipp Strӧbel, Steven A Johnsen

Background

ARID1A (AT-rich interactive domain-containing protein 1A) is a subunit of the BAF chromatin remodeling complex and plays roles in transcriptional regulation and DNA damage response. Mutations in ARID1A that lead to inactivation or loss of expression are frequent and widespread across many cancer types including colorectal cancer (CRC). A tumor suppressor role of ARID1A has been established in a number of tumor types including CRC where the genetic inactivation of Arid1a alone led to the formation of invasive colorectal adenocarcinomas in mice. Mechanistically, ARID1A has been described to largely function through the regulation of enhancer activity.

Conclusions

We identify a previously unknown context-dependent tumor-supporting function of ARID1A in CRC downstream of KRAS signaling. Upon the loss of ARID1A in KRAS-mutated cells, enhancers that are co-occupied by ARID1A and the AP1 transcription factors become inactive, thereby leading to decreased target gene expression. Thus, targeting of the BAF complex in KRAS-mutated CRC may offer a unique, previously unknown, context-dependent therapeutic option in CRC.

Methods

To mimic ARID1A-deficient colorectal cancer, we used CRISPR/Cas9-mediated gene editing to inactivate the ARID1A gene in established colorectal cancer cell lines. We integrated gene expression analyses with genome-wide ARID1A occupancy and epigenomic mapping data to decipher ARID1A-dependent transcriptional regulatory mechanisms.

Results

Interestingly, we found that CRC cell lines harboring KRAS mutations are critically dependent on ARID1A function. In the absence of ARID1A, proliferation of these cell lines is severely impaired, suggesting an essential role for ARID1A in this context. Mechanistically, we showed that ARID1A acts as a co-factor at enhancers occupied by AP1 transcription factors acting downstream of the MEK/ERK pathway. Consistently, loss of ARID1A led to a disruption of KRAS/AP1-dependent enhancer activity, accompanied by a downregulation of expression of the associated target genes. Conclusions: We identify a previously unknown context-dependent tumor-supporting function of ARID1A in CRC downstream of KRAS signaling. Upon the loss of ARID1A in KRAS-mutated cells, enhancers that are co-occupied by ARID1A and the AP1 transcription factors become inactive, thereby leading to decreased target gene expression. Thus, targeting of the BAF complex in KRAS-mutated CRC may offer a unique, previously unknown, context-dependent therapeutic option in CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。