Using bead injection to model dispensing of 3-D multicellular spheroids into microtiter plates

使用珠子注射模拟将 3-D 多细胞球体分配到微量滴定板中

阅读:6
作者:Fakhar Singhera, Emily Cooper, Louis Scampavia, Timothy Spicer

Abstract

Biomedical translational research has relied on two dimensional (2D) cell cultures for drug discovery over the decades, requiring cells to grow on a flat surface which does not always accurately model in vivo biological states. Three dimensional (3D) cell cultures, also known as 3D spheroids or organoids, grow as cellular tissues that are more physiologically relevant especially with respect to emulating cancer tumor-like structures [1]. While attractive, current methods for generating 3D spheroids has yet to replace 2D culturing methods used for drug discovery efforts that employ high-throughput screening (HTS), having limitations with scalability, reproducibility, and compatibility predominantly associated with conventional microtiter plate usage. Presented is a novel use of bead injection for the reproducible placement of spheroids and beads into high density microtiter plates of a 384- and 1536- well format.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。